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How to observe the convexity of CTA?
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Approach: Volatility at different timescale
Price model

St = S0 +

t∑
t′=1

Dt′ .

Price changes Dt′<t are stationary random variables with zero mean and covariance
given by:

E[DuDv ] = C(|u − v|) ,

Uncorrelated random walks corresponds to C(u) = σ2δu,0. Trending random walks are
such that C(u) > 0, while mean-reverting random walks are such that C(u) < 0

How does this translate in terms of the volatility of the walk? We define the volatility of
scale τ :

σ
2(τ) :=

1
τ
E
[

(St+τ − St )2
]

= σ
2 +

2
τ

τ∑
u=1

(τ − u) C(u) ,

with single step volatility σ2(1) = σ2.
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Simple Trend = long variance - short variance
Consider a simple strategy such that the position Πt is proportional to the price difference between t and 0:

Πt := (St − S0) ,

P&L from t − 1 to t is given by:

Gt := Πt−1Dt = Dt

t−1∑
t′=1

Dt′ , G1 := 0 .

Cummulative performance of from day 0 to day T :

GT =

T∑
t=1

Gt =

T∑
t=2

t−1∑
t′=1

Dt Dt′

=
1
2

(
T∑

t=1

Dt

)2

−
1
2

T∑
t=1

D2
t

⇒ GT =
1
2

(
ST − S0

)2︸ ︷︷ ︸
Long-term Variance

−
1
2

T∑
t=1

D2
t︸ ︷︷ ︸

Short-term Variance
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Convexity with general trend

Trend estimator defined with EMA filter:

dπt = −
2
τ
πt dt +

2
τ

dSt .

The solution of this SDE given by the following expression:

πt = Lτ (St ) =
2
τ

∫ t

−∞

e2(t−s)/τ dSs .

Daily profit and loss: dGt = φ(πt )× dSt

dGt = φ(πt )πt dt +
τ

2
φ(πt )dπt .

Let F (x) be such that F ′(x) = φ(x), then using Ito’s lemma we have:

dF (πt ) = φ(πt )dPt +
2φ′(πt )
τ2

dS2
t .

Inserting this expression in the equation of the P&L, we obtain:

dGt = φ(πt )πt dt −
φ′(πt )
τ

dS2
t︸ ︷︷ ︸

Drift term

+
τ

2
dF (πt )︸ ︷︷ ︸

Risk term

Re-arrange the different terms and introduce the filter LT :

LT [dGt ] =
τ

T
F (πt )︸ ︷︷ ︸

Payoff

−LT

[
φ′(πt )
τ

dS2
t

]
︸ ︷︷ ︸
Volatility Cost

+LT

[
φ(πt )πt −

τ

T
F (πt )

]
dt︸ ︷︷ ︸

Error term
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Illustration of convexity
Linear trend: Lτ/2[dGt ] = π2

t −
1
τ
Lτ/2[dS2

t ].
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Replication of Risk Parity and CTA

Commodities Stock Indices Foreign Exchange Rates Short term interest rates Government bonds
WTI Crude Oil (CME) S&P 500 (CME) EUR/USD (CME) Euribor (ICE) 10Y U.S. Treasury Note (CME)

Gold (CME) EuroStoxx 50 (Eurex) JPY/USD (CME) Eurodollar (CME ) Bund (Eurex)
Copper (CME) FTSE 100 (ICE) GBP/USD (CME) Short Sterling (ICE) Long Gilts (ICE)
Soybean (CME) Nikkei 225 (JPX) AUD/USD (CME) JGB (JPX)

CHF/USD (CME)

Employ the most liquid futures in each sector.

This selection is stable across time.
The time series are considered between January 2000 and October 2015.
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Correlation between CTA replicator and the SG CTA Index as a function of
the time-scale of the trend. maximum is around τ = 180 days.
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Cumulated returns of trend replicator and the SG CTA Index. We seem to
capture all the alpha contained in the SG CTA Index.
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Convexity of CTA versus S&P500

Plot aggregated performance over τ ′ days the SG CTA Index as a
function of a τ -day trend on S&P 500 index.

we need a careful choice of timescale to observe the convexity.
Trend on S&P 500 is computed with τ = 180 while trend on SG
CTA Index is computed with τ ′ ≈ 90.

Convexity feauture is much more significantly than the first
monthly plot.

S
G

 C
T

A
 I

n
d

ex

Trend Signal

-10 %

-5 %

0 %

5 %

10 %

15 %

20 %

25 %

30 %

-3 -2 -1 0 1 2 3

Convexity of Trend following & Variance arbitrage



Trend and Convexity
Trend versus Risk Parity

Variance arbitrage
Conlusions

Convexity of CTA versus Risk Parity

A simple trend following strategy applied on Risk Parity provides
the exact quadratic behavior of convexity.

CTA index provides also convexity to Riks Parity strategy

We can derive an inequality for lower bound of convexity:

E[GCTA|T RP] ≥ Υ(τ)
((
T RP
)2
− 1
)

where T RP is the trend on Risk Parity index.
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Conclusion: trend as a hedge of Risk Parity

Trend following is a natural way to do stop-loss for long risk parity.

The hidden cost of for doing this hedge is the realized volatility.

Tuning the mixing between Trend and Long-only, one may obtain
the desired the convexity for the portfolio.

Both global trend and diversified trend can be used to hedge long
risk parity.
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Straddle and collection of strangles
ATM straddle payoff:

GstraddleT := |ST − S0| − (CS0
0,T + PS0

0,T )

= |ST − S0| −

√
2T
π

S0σ
a
0

For a collection of strangles:

GstranglesT :=

∫ S0

0

(K − ST )+dK +

∫ ∞
S0

(ST − K)+dK︸ ︷︷ ︸
1
2 (ST−S0)2

−

∫ S0

0

PK
0,T +

∫ ∞
S0

CK
0,T︸ ︷︷ ︸

1
2 T σ̄20,T

We obtain the payoff:

GstranglesT =
1
2

(ST − S0)2 −
1
2

T σ̄20,T

Buying straddle or strangles is a simple way to have long exposure on long-term variance by paying fixed implied volatility
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Trend as Delta-hegde: Model-free approach
When the price move, we need to trade a quantity of underlying to
keep neutral Delta. The Delta-hedge position is given simply by:

∆hdg = −(St − S0)

Total P&L of the hedge from t = 0 to the maturity is given by:

GhedgeT :=
1
2

T∑
t=1

D2
t −

1
2

(ST − S0)2

Add the pay-off of strangles to this hedge P&L, we find:

GstranglesT + GhedgeT =
1
2

T∑
t=1

D2
t −

T
2
σ̄
2
0,T︸ ︷︷ ︸

Variance Swap payoff

Spot Price

Portfolio at time t

Spot Price Strike Price

Portfolio at time t'
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Variance arbitrage
Selling option will allow a risk premium. In fact, E[GstranglesT ] < 0 because the implied volatility is usually overpriced and more expensive
than the realized volatility.

GstranglesT =
1
2

(ST − S0)2 −
1
2

T σ̄20,T

Doing simple trend is also a simple way to exposure to long-variance. Indeed, trend anomaly has been proved empirically E[GtrendT ] > 0.

GtrendT =
1
2

(
ST − S0

)2
−

1
2

T∑
t=1

D2
t

Trading volatility is interesting because we profit from both effects. Selling long-variance with high cost "implied variance" and buying
long-variance with smaller cost "realized variance"⇒ Variance arbitrage

GtrendT − GstranglesT =
1
2

T σ̄20,T −
1
2

T∑
t=1

D2
t
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Conclusions
Trend following and convexity:

Trend is an arbitrage between long-term variance and short-term variance
Convexity of trend is observed in association with a timescale (investment horizon or trend timescale)
Timescale of trend defines a maturity (like call/put). Trend behaves as a hedge only for this maturity.

Trend following as a hedge of Risk Parity:
Trend can be used as a hedging tool of long risk parity
Both diversified trend and global trend can be used for hedging the long risk

Variance arbitrage:
Delta hedge of options is a trend. To harvest option premium, hedging frequency is important.
Choosing hedging frequency is choosing timescale of volatility that one wants to be exposed.
Best choice for hedging is to employ the trend anomaly with low frequency.
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